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This study evaluates the impact of climate-smart agricultural practices (CSAP) 

on yield and income among smallholder farmers in Northern Ghana. 

Understanding the impact of CSAPs on maize and sorghum yield and income is 

crucial for enhancing agricultural productivity, boosting the region’s economy, 
and ensuring food security. Data were collected through questionnaires from 

1000 farmers. Multinomial endogenous treatment effects were used to examine 

the impact of CSAP adoption on the yield and income of maize and sorghum 

farmers. The study reveals that climate-smart agriculture practices like chemical 

fertiliser conservation agriculture, intercropping, and joint adoption significantly 

improve maize and sorghum yields and farmers’ incomes. This is worrying 

given the effects of excessive reliance on chemical fertilisers on soil and 

environment. The government’s active investment in research, capacity building, 

and infrastructure development to facilitate the widespread adoption of these 

practices in Northern Ghana is highly recommended.   

© 2024 The Authors. Published by Society of Agriculture, Food and Environment (SAFE). This is an Open Access article distributed under the terms of the Creative 

Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)  

 

INTRODUCTION  

Agriculture is critical to global economic growth, 

contributing 4% to global GDP and supporting around 70% 

of impoverished individuals in rural areas (Raj et al., 2022). 

Yet, the sector is increasingly associated with climate 

change, using 40% of global land, 70% of fresh, and 

contributing 25% of human-induced greenhouse gas 

emissions. Climate change's effects on agriculture are 

exacerbated by population growth and rapid urbanization 

given the sector's reliance on natural resources (Geoge et al., 

2020; Kurgat et al., 2020). 

Sub-Saharan Africa, specifically Northern Ghana, faces 

significant climate change impacts, with projections 

indicating temperature increases of 1°C – 3°C by 2060 and 

up to 5.2°C by 2090 (Kyei-Mensah et al., 2019; 

Acheampong et al., 2022).  Bawayelaazaa Nyuor et al., 

(2016) all reported that this has reduced crop yields and 

increased food insecurity, with about 1.2 million people in 

Ghana experiencing food insecurity due to these challenges. 

Northern Ghana is characterised by a dry deciduous to semi-

arid climate and faces increasingly erratic rainfall patterns, 
frequent droughts, and floods, which severely undermine 

crop productivity and threaten the livelihoods of smallholder 

farmers (Nkegbe and Shankar, 2018; Alhassan et al., 2018). 

https://journal.safebd.org/index.php/jafe
https://doi.org/10.47440/JAFE.2024.5310
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These challenges necessitate innovative approaches to 
farming that can withstand climatic variability while 

maintaining agricultural productivity. 

In response to these challenges, Climate-Smart Agriculture 

(CSA) offers a potential solution to these challenges, 

providing tailored practices like mulching, intercropping, and 

conservation agriculture to improve productivity and 

resilience (Botchway et al., 2016). By adopting CSA, 

farmers can adapt to climate variability while mitigating 

greenhouse gas emissions. The Food and Agriculture 

Organization (FAO) identifies three key objectives for CSA: 

increasing productivity and income, enhancing resilience to 

climate shocks, and reducing emissions (FAO, 2016; IPCC, 
2014; Khelifa et al., 2021; Zougmoré et al., 2021; Zubairu, 

2021). 

The study evaluates CSA's impact on smallholder maize and 

sorghum farmers in Northern Ghana, a region that 

experiences some of the highest levels of food insecurity and 

poverty. By examining CSA’s role in sustainable agricultural 

development, the research aligns with the United Nations 

Sustainable Development Goals, specifically Goal 2 (Zero 

Hunger) and Goal 13 (Climate Action). The insights gained 

from this research are expected to guide efforts to improve 

food security and resilience across Northern Ghana and 

beyond 

Finally, the study locations reflect the broader Northern 

Ghana demographic in terms of agricultural practices, socio-

economic conditions, and climate challenges, allowing for 

broader regional applications of the findings. The outcomes 

are intended to benefit a diverse range of stakeholders, 

including farmers, policymakers, and international 

development agencies. The rest of this paper is structured as 

follows: Section 2 outlines the methodology, Section 3 

discusses the results, Section 4 presents the conclusions, and 

Section 5 offers recommendations 

 

MATERIALS AND METHODS 

Study Area   

Agriculture primarily characterized the Upper West, Upper 

East, and Northern Regions of Ghana, with farming as the 

predominant economic activity. The average minimum and 

maximum temperatures of the region are 14 ℃ at night and 

40 ℃ during the day. The region experiences two seasons: 

the dry season (November to April) and the wet season (May 

to October), with an average annual rainfall of 750–1050 

mm. The dry season started in November and concluded in 

March/April, characterized by the highest temperatures 
observed towards the end of this period (March-April), while 

December and January exhibited the lowest temperatures. 

Harmattan winds normally occur from December and end in 

mid-February. The harmattan winds have a considerable 

effect on the temperature of the area, causing the temperature 

to vary between 14℃ at night and 40℃ during the day. 

Humidity is very low, aggravating the effect of daytime heat. 

Figure 3.1 shows the districts and communities of the study 

areas where data were collected from smallholder maize and 

sorghum farmers. 

 

Figure 1. Map of the districts and communities where data 

were collected from farmers. 

 

Sampling techniques and sample size 

The study used a multistage sampling technique to select 

participants from the population of smallholder farmers in 

three regions: the Northern Region, the Upper East Region, 

and the Upper West Region. This approach involved several 

stages of selection to ensure a representative sample from 

these diverse areas. 

Stage 1: Region Selection 

The first stage involved selecting three regions where the 

study would be conducted. These regions were chosen based 

on their significant population of smallholder farmers and 
geographic representation. The regions selected were the 

Northern, Upper East, and Upper West regions. 

Stage 2: District Selection 

Within each selected region, the study identified specific 

districts where the study would occur. The districts were 

selected purposively based on their agricultural activity, 

access to climate-smart agricultural practices, and 

accessibility for the research team. For example: 

In the Northern Region, the study chose the Savelugu and 

Tolon districts. 

In the Upper East Region, the study chose the Bongo and 

Kasina-Nankana districts. 

In the Upper West Region, the study chose the Wa West and 

Nadoli districts. 

Stage 3: Community Selection 

Within each selected district, the study further selected 

specific communities. This selection was also purposive, 

focusing on communities with a high density of smallholder 

farmers who had access to and used climate-smart 

agricultural practices. For example: 
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In the Savelugu district, the study selected the Nanton and 

Pong-Tamale communities. 

In the Bongo district, the study selected the Namoo and Zoko 

Goo communities. 

In the Wa West district, the study selected the Kpongu and 

Charia communities. 

Stage 4: Participant Selection 

Finally, the study selected individual smallholder farmers 

within each community. The selection was performed using 

a random sampling technique from a list of registered 

smallholder farmers maintained by the Ministry of Food and 

Agriculture (MoFA). The sample sizes for each community 

were proportionate to the population of smallholder farmers, 

ensuring balanced representation across regions and districts. 

The total sample size for this study was 1,000, which was 

distributed across the three regions as follows: 

Northern Region: 338 participants 

Upper East Region: 330 participants 

Upper West Region: 332 participants. The table summarises 

how multi-stage sampling was conducted. 

 

Analytical framework and econometric model 

In terms of impact analysis, existing studies use a count data 

model (Isgin et al., 2008; Sharma et al., 2011). In terms of 
agricultural innovative practice adoption, existing studies 

generally used propensity score matching (PSM) (Nakano et 

al., 2018) to estimate the average treatment effect on the 

treated (ATT) and average treatment effect on the untreated 

(ATU). However, PSM can only correct the problem of 

sample selection bias caused by observable factors but fails 

to explain the impact of unobservable factors (Fischer and 

Qaim, 2012), potentially leading to bias in the estimates 

(Abdulai, 2016). Furthermore, multinomial endogenous 

switching regression (MESR) is applied to multivalued 

processing to explain observable and unobservable factors 

that affect the allocation and outcome of the treatment  
(Hörner & Wollni, 2022). However, it cannot estimate the 

average effect of the treatment from one treatment level to 

another. Based on these results, the multinomial endogenous 

treatment effects were used by Gao et al. (2019), Guo et al. 

(2020), and Zakaria et al. (2021) to evaluate the impact of 

agricultural innovative practices on the welfare of 

smallholder farmers. The multinomial endogenous treatment 

effects (METE) proposed by Deb and Trivedi (2006) was 

employed in this study to investigate the effect of maize and 

sorghum on smallholder farmers in Northern Ghana.  

The study modelled farmers choice of practices (mulching, 
chemical fertiliser, conservation agriculture, intercropping, 

agroforestry, crop diversity, and crop choice) and their 

impact on the outcome variables using a multinomial 

endogenous treatment effect model as proposed by Deb and 

Trivedi (2006). The main advantage of this approach to 

impact evaluation is that it accounts for selectivity bias due 

to observed (through farm and household characteristics) and 

unobserved heterogeneity (via latent variables). This 

approach specifies a joint distribution of endogenous 

multivalued treatments and outcomes using observed and 

unobserved characteristics to link treatment and outcome 

equations. 

The framework proposed by Deb and Trivedi (2006) has two 

components: the treatment equation and the outcome 

equation. These equations are connected by observed 

characteristics. Rosenbaum and Rubin (1983) and others 

(Cattaneo, 2010; Imbens & Wooldridge, 2009) have shown 

that individual farmers belong to different treatment groups 

but have similar socioeconomic characteristics (X) and can 

only be compared if the treatment assignment is random 

(Issahaku and Abdulai, 2020). 

The adoption of CSA was categorised into non-adoption (0), 

adoption of chemical fertiliser (C. fertilise), only (1), 
adoption of conservation agriculture (CA) and intercropping 

(ITC) (2), adoption of chemical fertiliser and conservation 

agriculture (3), adoption of chemical fertiliser and 

intercropping (4) and joint adoption (5). Therefore, adoption 

occurs if the maize and sorghum farmers belong to any of 

these categories. Considering these categorisations, METE 

was applied to estimate the effects of each stage of adoption 

on maize and sorghum yields and income-setting non-

adoption as a comparison group. 

The multinomial treatment effect is a typical approach used 

in econometric models to address selectivity bias effects. It 
comprises two distinct segments that correspond to the 

generation processes of the treatment group indicators and 

outcome equations. In this context, the adoption of CSA 

practices by maize and sorghum farmers constitutes the 

treatment, whereas the observed outcome measures are the 

yields and income of these farmers. Specifically, a maize and 

sorghum farmer (i) decide whether to adopt these practices 

CSA from a set of five treatments (t = 0, 1, 2, 3, 4, 5). 

Representing 𝐼𝑈𝑖𝑡
∗  which denotes the indirect utility function 

with the    treatment, the indirect utility function can be 

stated as follows: 

 𝐼𝑈𝑖𝑡
∗ = 𝐾𝑖

′𝛾𝑡 + 𝛿𝑡𝜔𝑖𝑡 + 𝜏𝑖𝑡. 

The indirect utility 𝐼𝑈𝑖𝑡
∗  function comprises the latent factor 

𝜔𝑖𝑡unobservable characteristics generally common to 

individual maize and sorghum farmer treatment choices (i.e., 

C. fertiliser only, CA and ITC, C. fertiliser and CA, and joint 

adoption) and outcomes.  It is assumed that 𝜔𝑖𝑡   is 

independent of𝜏𝑖𝑡 .  Representing 𝑡 = 0  as the based group 

(i.e., the decision of a maize and sorghum farmer not to 

adopt any of the CSAs), the indirect utility function would be 

set to zero for the based adoption. 𝐼𝑈𝑖𝑡=0
∗    .  

As. is unobservable, the binary variables    were 

represented for the observed treatment decision to adopt the 
CSA practice option available to maize and sorghum 

farmers.  The    follow the mixed multinomial logit pattern 

structure . Therefore, the 

probability function for a maize and sorghum farmer’s 

decision to adopt CSA practices is expressed as a latent 

structure multinomial logit model  

 

 Pr (
𝑏𝑖

𝐾𝑖,𝜔𝑖
) =

exp(𝐾𝑖
′𝛾𝑡+𝛿𝑡𝜔𝑖𝑡)

1+∑ exp(𝐾𝑖
′𝛾𝑘+𝛿𝑘𝜔𝑖𝑘)𝑡

𝑗=1
 

 

where t,j = 0, 1, 2, 3, 4, 5, 6,  
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The outcome equations (yield and income of maize and 

sorghum) can be expressed as follows: 

 

 𝐸(𝑦𝑖|𝑏𝑡 , 𝐾𝑖 , 𝜔𝑖) = 𝑥𝑖
′𝛽 + ∑ 𝛼𝑡𝑏𝑖𝑡 +𝑇

𝑡=1 ∑ 𝜋𝑡𝜔𝑖𝑡
𝑇
𝑡=1  

The where is the set of all exogenous covariates within 

𝐾𝑖  and 𝑏𝑖𝑡 is the treatment variable with the associated 

parameter vector    are the treatment coefficients 

relative to the based group of no direct adoption of CSA 

efforts. The   (𝑦𝑖)   is a function of each latent factor when 

the outcome variables are linked to unobservable effects that 

might have direct and/or indirect influence on the maize and 

sorghum farmers’ decision to adopt CSAs. The loading 

factor coefficients   are estimated for each effect (impact) 

of the CSA option on maize and sorghum yields and income. 

 

RESULTS AND DISCUSSION 

The results from Table 2 showed the socio-demographic 

characteristics for the maize and sorghum farmer adopters 

and non-adopters of the CSA. The average age of adopters 

and non-adopters of CSA was 38 and 37 years, respectively, 

which is significant at the 5% level. This indicates that age 

plays a role in distinguishing CSA adopters from non-

adopters. The number of adopters and non-adopters in male-

headed households was 72% and 75%, respectively, but there 
was no significant difference between adopters and non-

adopters. The results revealed that adopters and non-adopters 

among married household heads were 82% and 81%, 

respectively. The average household size was 11 for both 

adopters and non-adopters, but there were no significant 

differences between the two groups. Biosecurity was found 

to be similar between adopters and non-adopters, with no 

significant differences. 

The land slope was found to be 73% and 65%, respectively, 

for adopters and non-adopters at the 1% significance level. 

This indicates that adopters tend to have steeper land slopes 
than non-adopters. It was also revealed that 16% and 26% of 

adopters and non-adopters, respectively, had the service of 

extension officers. This implies that non-adopters were more 

likely to have access to such support. The results revealed 

that access to climate information was 53% and 36% for 

adopters and non-adopters, respectively, indicating that 

adopters were more likely to have access to this type of 

information. Access to the agricultural market was found to 

be 30% and 27% for adopters and on-adopters, respectively, 

indicating that adopters had a slightly higher level of access 

to the market. The results found that land tenure was 45% 

and 61% for adopters and non-adopters, respectively, at a 1% 
significance level. This indicates that non-adopters were 

more likely to have secure land tenure than adopters. 

Furthermore, the cost of hiring labour was 3.857 and 4.229 

maize and sorghum for adopters and adopters, respectively, 

at the 10% significance level. This demonstrates that non-

adopters typically face higher labour costs than adopters. 

Access to a phone was found to be between 43 % and 39 % 

for adopters and non-adopters, but there was no significant 

difference between adopters and non-adopters. This implies 

that both adopters and non-adopters in this context have 

relatively similar access to this technology.  

The results showed that land size was 3.427 hectares and 

4.077 hectares for adopters and non-adopters, respectively, at 

1% significance. This supports the idea that non-adopters 
typically have larger land holdings than adopters. 

Educational level was found to be 8.031 and 8.554 at 1 % 

significance for adopters and non-adopters, respectively. The 

data support the notion that non-adopters tend to have 

slightly higher educational levels than adopters. 

The maize output for adopters and non-adopters were 9.963 

kg/ha and 9.9147 kg/ha, respectively, at a 1% significance 

level. This indicates that the adoption of the specified 

agricultural practice is associated with a statistically 

significant increase in maize output compared with the 

output of non-adopters. 

It was revealed that maize income was GH₵1174.923 and 
GH₵1104.857 for adopters and non-adopters, respectively. 

This implies that adopters had a slightly higher income from 

maize production than non-adopters. The results revealed a 

slight difference in sorghum yield between CSA adopters 

(3.009kg/ha) and CSA non-adopters (3.030kg/ha). The 

results showed that sorghum had an income of GH₵218.939, 

while CSA non-adopters had an income of GH₵ 261.200. 

The total yield of adopters of CSAPs was 12.972 kg/ha 

compared with that of CSA non-adopters (12.177 kg/ha). 

Total Income: CSA adopters have slightly higher total 

income (GH₵ 1393.862) than CSA non-adopters 

(GH₵1366.057).  

 

Table 2. Description of sampled smallholder maize and 

sorghum farmers 

Variable  CSA 

adopters 

CSA non-

adopters 

t-test/chi2 Pooled 

Age  38.42 36.75 -2.2467** 37.836 
Sex 0.717 0.746 0.9743 0.727 
Marriage  0.818 0.811 -0.2735 0.816 
Household 
size 

11.170 11.19 -1.3889 11.52 

Livelihood  0.951 0.949 -0.1520 0.950 
Land slope  0.729 0.651 -2.5716*** 0.702 
Extension  0.163 0.263 3.800*** 0.198 

C. 
information  

0.532 0.366 -5.0922*** 0.474 

A. market 0.295 0.269 -0.8944 0.286 
Land tenure  0.452 0.606 4.6737*** 0.506 
Hired labour 
cost (log) 

3.857 4.229 1.6756* 3.988 

Phone  0.425 0.389 -1.1041 0.412 
Land size 4.066 3.427 -3.3943*** 3.859 

Education  8.031 8.554 2.9518*** 8.214 
Maize output 
(kg/ha) 

9.963 9.9147 -2.4966*** 9.677 

Maize income 
(GH₵ 

1174.923 1104.857 -0.8719 1150.40 

Sorghum 
yield (kg/ha) 

3.009 3.030 0.1631 3.017 

Sorghum 

income (GH₵ 

218.939 261.200 0.9775 233.73 

Total yield 
(kg/ha) 

12.972 12.177 -2.1499*** 12.694 

Total income 
(GH₵) 

1,393.862 1,266.057 -0.2812 1384.13 

Source: Field data estimate using STATA, 2022. 
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Socioeconomic drivers for individual and joint adoption of 

CSA practices 

Table 3 presents the results of the adoption of CSA practices 

on yield among maize and sorghum farmers. The Wald Chi2 

value is 577.99, which is significant at the 1% level. The 

likelihood ratio test (chi2 = 2062.4719, prob > chi2 = 

0.0000) was also significant. This model diagnosis justifies 

the use of a multinomial treatment effect model.  

First, the age of the farmer was found to have a significant 

positive effect on the adoption of joint practices at the 10% 

level. This supports the finding of Fischer and Burton, 

(2014) that older farmers tend to have more experience and 

knowledge, making them more open to collaborative farming 
practices.  Household size was found to have a positive and 

significant effect on the adoption of a combination of 

chemical fertiliser and CA at 1%. This implies that larger 

households may have more labour resources and the capacity 

to invest in and implement these agricultural practices 

effectively. Asfaw et al. (2016) and Kurgat et al. (2020) 

explained that the decision to adopt agricultural practices is 

associated with household size. 

The study further revealed that livelihood had a significant 

positive effect on the adoption of a combination of CA and 

intercropping (ITC) at 10%. This is in line with Asfaw et al. 
(2016) and Kurgat et al. (2020), who indicated that 

households with more diverse or stable livelihoods may be 

more willing and able to invest in and adopt these sustainable 

farming practices to enhance their agricultural productivity. 

The study indicated that topography had a significant 

positive effect on the adoption of chemical fertiliser, but only 

at the 1% level. This indicates that certain topographical 

features, such as soil types or landscape characteristics, may 

make it more favourable or conducive for farmers to use 

chemical fertilisers to improve crop yields in those specific 

areas. Furthermore, the availability of climate information 

had a positive and significant effect on the adoption of a 

combination of C. fertiliser and CA, C. fertiliser and ITC, 
and joint adoption at 1% and 5%, respectively. This implies 

that access to climate information empowers farmers to make 

informed decisions about agricultural practices, helping them 

adapt to changing weather patterns and improve their 

farming practices accordingly. Accessible information 

significantly enhances the likelihood that smallholder 

farmers will embrace new and innovative practices 

(Keshavarz and Karami, 2014). 

The results of the study revealed that market availability had 

a significant positive effect on the adoption of C. fertiliser 

and ITC at the 1% level. This indicates that easy access to 

markets and opportunities to sell crops incentivize farmers to 
invest in these practices, as they can expect better returns and 

profitability through increased agricultural productivity and 

diversified crop options. In addition, land size had a 

significant positive effect on adoption in all practices such as 

C. fertiliser and CA, C. fertiliser and ITC, and joint adoption 

at the 1% level. This may mean that larger landholdings 

provide farmers with the resources and capacity to 

implement these practices more extensively. 

Location (Northern) had a significant positive effect on 

adoption of C fertiliser only, and C fertiliser and CA at 1% 

and 5% levels, respectively, compared with the Upper East 
Region. This seems to indicate that factors such as soil 

conditions, climate, or access to resources in the Northern 

Region may be more favourable for the adoption of these 

agricultural practices than in the Upper East Region. 

Furthermore, the Upper West had a significant positive effect 

on adoption of C. fertilizer only at a 1% level more than the 

Upper East Region. This indicates that compared with the 

Upper East Region, conditions, resources, or agricultural 

support in the Upper West Region may be more beneficial 

for the adoption of chemical fertiliser, making it a more 

appealing option for farmers there. 

 

 

Table 3. Socioeconomic drivers for individual and joint adoption of CSA 

Variables  C. Fertiliser only  CA+ITC C. fertiliser + CA  CF+ ITC Joint adoption 

Age 0.0206 0.0139 -0.0133 -0.0189 0.0216* 
 (0.0136) (0.0175) (0.0137) (0.0190) (0.0118) 
Sex -0.555** 0.511 -0.202 -0.499 -0.243 
 (0.257) (0.437) (0.282) (0.367) (0.249) 
Marital status -0.128 0.419 -0.288 0.0738 0.426 
 (0.330) (0.439) (0.350) (0.456) (0.309) 
Household size -0.0659*** -0.0108 0.0740*** -0.0711* 0.0206 
 (0.0242) (0.0384) (0.0216) (0.0383) (0.0207) 

Livelihood  0.359 1.771* -1.076** -1.630** 0.610 
 (0.586) (0.915) (0.540) (0.658) (0.600) 
Farm size -0.507*** -0.00404 -0.202* -0.186 -0.212** 
 (0.106) (0.134) (0.104) (0.153) (0.0880) 
Topography 0.864*** 0.0736 -0.0106 -0.531 -0.126 
 (0.286)  (0.364) (0.301) (0.361) (0.248) 
Availability of AEAs -0.961*** -0.145 -0.435 0.0926 -0.394 
 (0.321) (0.477) (0.357) (0.407) (0.292) 

Available information 0.209 0.325 0.833*** 0.893** 1.259*** 
 (0.247) (0.381) (0.278) (0.396) (0.255) 
Market availability -1.778*** -0.731 -0.353 1.184*** 0.353 
 (0.355) (0.459) (0.326) (0.368) (0.258) 
Own land -0.321 -0.344 -0.709*** -1.256*** -0.687*** 
 (0.253) (0.363) (0.269) (0.367) (0.239) 
Labour cost -0.0461 -0.165*** 0.0227 -0.0529 -0.0163 
 (0.0355) (0.0584) (0.0405) (0.0507) (0.0360) 

IT phone 0.388 0.0451 -0.856*** 0.281 -0.311 
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Variables  C. Fertiliser only  CA+ITC C. fertiliser + CA  CF+ ITC Joint adoption 

 (0.269) (0.367) (0.304) (0.383) (0.275) 
Land size 0.458*** -0.595*** 0.467*** 0.561*** 0.333*** 
 (0.107) (0.156) (0.107) (0.146) (0.0881) 
Years of education -0.0928* 0.0177 -0.132*** -0.173*** 0.0762 
 (0.0479) (0.0627) (0.0487) (0.0549) (0.0473) 

Northern 1.896*** -3.066*** 0.702** -1.147** -0.0423 
 (0.423) (0.789) (0.339) (0.502) (0.302) 
Upperr West 1.495*** -3.268*** -1.444*** -0.473 -1.457*** 
 (0.411) (0.614) (0.393) (0.437) (0.316) 
Constant -1.100 -2.082 0.626 1.944 -3.230*** 
 (1.057) (1.446) (1.027) (1.385) (1.050) 
Model diagnosis       
Wald chi2 (96) =  577.99     

Prob > chi2 = 0.0000     
Log-likelihood =                    -2062.4719               
Observations 1,000     

 

Category 1 is the control group (base category). Source: Field survey, 2021. 
a. Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

Impact of climate-smart agricultural practices on yield  

Table 4 presents the results of the impact of adoption of CSA 

practices on maize and sorghum yield (productivity). F 

(chemical fertiliser only), CA (conservation agriculture), ITC 

(intercropping), C fertiliser and CA, and joint adoption 

denote the treatment indicators that assessed the impact. This 
study investigates the impact of these CSA practices on 

adoption with the base category "no adoption" in all cases. 

The CSA practices all have statistically significant and 

positive effects on both maize and sorghum yields, indicating 

that adoption of CSA practices generally tends to have a 

favourable and considerable impact on maize and sorghum 

yields. Thus, the adoption of a multinomial treatment effect 

model is justified because there is evidence of a selectivity 

bias effect, as shown by the statistical significance of the 

lambdas. Using OLS for the estimation would have produced 

a biased and inconsistent estimate. 

Interesting conclusions were drawn from the multinomial 
treatment effects of implementing several CSA practices on 

maize, sorghum, and pooled yields. Among these practices 

chemical fertiliser application (CF) alone significantly 

increased maize and sorghum yields, with an effect of 

approximately 0.246 kg/ha and 0.094 kg/ha, respectively. 

When considering combined yields, the "CF only" treatment 

factor showed a positive impact, with an effect size of 

approximately 0.145 kg/ha, indicating a higher level of 

statistical significance. The finding supports that of Leslie et 

al. (2018), who revealed that the adoption of organic 

fertiliser was significant and positive for the yield of maize 

and legumes in Malawi. 

Conservation agriculture and intercropping (CA+ITC) 

significantly and markedly impacted all three areas. This 

contributed to an increase of approximately 0.375 kg/ha for 

maize, 0.0243 kg/ha for sorghum, and 0.363 kg/ha for pooled 

yields. This finding supports the findings of Rosenstock et 

al. (2019), who reported that CA improves maize production 

among smallholder farmers from 34 % to 56% in Tanzania. 

Furthermore, in Mozambique, for instance, a study among 

smallholder maize crop farmers revealed that farmers 

adopted intercropping because they found the practice to 
increase crop yield, improve income, and therefore increase 

food security (Osman et al., 2011). 

Similar to this, CF+ CA" practices had a very beneficial 

overall impact. This resulted in an increase in yield of 

approximately 0.298 kg/ha for maize, approximately 0.196 

kg/ha for sorghum, and approximately 0.0345 kg/ha for 

pooled yield. "CF only" practice also had a favourable 

impact on all three categories, increasing yields by 
approximately 0.0947 kg/ha in sorghum and 0.0246 kg/ha in 

maize. Finally, the "Joint adoption" treatment factor 

significantly impacts maize yield, with an effect size of 

approximately 0.166 kg/ha. Sorghum yield shows a minimal 

change, with an effect size of 0.00291 kg/ha; however, when 

considering the combined yields of maize and sorghum, it 

has a positive effect of approximately 0.0422 kg/ha. 

In terms of socioeconomic factors, an increase in farmer age 

by 1 year is associated with a slight but significant increase 

in both maize and sorghum yields. For every additional year 

of a farmer, maize yield increases by approximately 0.00250 

kg/ha, and sorghum yield increases by approximately 
0.00262 kg/ha. As older farmers become more attuned to the 

specific needs of their crops, they are better equipped to 

optimize their farming practices resulting in increased yields 

for both maize and sorghum. This is consistent with the 

findings of Ngigi (2009) and Abegunde et al. (2019).  

The study findings further revealed that male farmers tend to 

have lower yields than female farmers. Specifically, being 

male is associated with a decrease in maize yield by 

approximately 0.101 kg/ha., a decrease in sorghum yield by 

approximately 0.0464 kg/ha, and a significant decrease in the 

overall pooled yield by approximately 0.103 kg/ha. This 
result is consistent with that of Oyetunde-Usman et al. 

(2021), who also revealed that male-headed households tend 

to engage more intensively in sustainable agricultural 

practices. This trend has been partly attributed to the limited 

access that female-headed households must essential 

agricultural inputs 

Farm size significantly impacted maize and sorghum yields 

in northern Ghana. Increasing farm size by 1 % is associated 

with a notable increase in yields. Specifically, for every 1 % 

increase in farm size, maize yield increases by approximately 

0.0556 kg/ha, sorghum yield increases by approximately 
0.0162 kg/ha, and the overall pooled yield increases by 

approximately 0.0606 kg/ha. These findings agree with those 

of Aryal et al. (2018) and Zougmoré et al. (2021), supporting 

evidence that farm size and agricultural yields are 
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interconnected. They reinforce the notion that larger farms 
can harness economies of scale, leading to optimised 

resource allocation and the adoption of improved farming 

practices ultimately resulting in higher crop yields. 

In addition, the availability of family labour significantly 

influences maize and sorghum yields. An increase in family 

labour by 1 unit is associated with a significant increase in 

maize yield by approximately 0.0305 kg/ha and a significant 

decrease in sorghum yield by approximately 0.0264 kg/ha. 

However, the impact on the overall pooled yield was smaller, 

with an increase of approximately 0.0111 kg/ha. These 

results corroborate the findings of Issahaku and Abdulai 

(2020), who illustrated a positive and substantial relationship 
between larger household sizes and the adoption of CSA. 

They argued that the presence of a larger household can have 

a significant and positive impact on the adoption of CSA 

practices especially when considering the labour 

requirements in certain CSA activities such as mulching. 

However, it is important to acknowledge that a larger 

household size also implies a greater number of mouths to 

feed.  Finally, the cost of hired labour plays a significant role 

in crop yields. An increase in the cost of hired labour by 1 

unit is associated with a significant increase in maize yield 

by approximately 0.0113 kg/ha.  and a significant increase in 
the overall pooled yield by approximately 0.00840 kg/ha. 

This study result affirmed the findings of previous studies 

(Parashar et al., 2000; Ferdinand et al., 2021), which 

highlighted the significance of labour allocation in 

influencing production efficiency within smallholder farmer 

households. 

Table 4 indicates that the “Lambda for CF only” showed 

positive and significant effects. This implies that unobserved 

factors that increase farmers’ likelihood of adopting CF also 

increase farmers’ yields of both maize and sorghum, and the 

correlation between these unobservable factors is statistically 

significant with magnitudes of 0.277 and 0.132, respectively.  

The lambda for CF + CA also shows a positive and 

significant effect of (0.299) and (2.209), implying that 

unobservable factors that increase farmers’ likelihood of 

adopting CF combined with CA also increase yields of both 

maize and sorghum. Furthermore, the correlation between 

these unobservable factors and the adoption of CF + CA was 

statistically significant, with magnitudes of 0.299 and 0.209. 

This means that there are common, unobservable elements 

that influence both the choice to adopt CF + CA and higher 

crop yields. 

The lambda for CF + ITC further indicated a positive and 
significant effect of (0.311). This implies that unobservable 

factors that increase farmers’ likelihood of adopting CF 

combined with ITC also increase yields of only maize. The 

correlation between these unobservable factors and the 

adoption of CF + ITC is statistically significant, with a 

magnitude of 0.311. This indicates that common, 

unobservable elements influence both the choice to adopt CF 

+ ITC and higher crop yields for maize. 

The “Lambda for joint adoption” was found to have a 

positive and significant effect.  This implies that the 

unobserved factors that increase the farmer’s likelihood of 
adopting joint CSA practices also increase the yield of both 

maize and sorghum, and the correlation between them is 

unobservable are significant with magnitudes of 0.109 and 

0.0527, respectively. 

Increasing Agricultural Productivity  

The results in Table 4.5 clearly indicate the adoption of 

multiple agricultural practices including chemical fertiliser 

(C. fertiliser) alone, conservation agriculture (CA), and 

intercropping, C. fertiliser, CA, and C. Fertiliser and 

intercropping have a significant positive effect on maize and 

sorghum yields. This result aligns with the first goal of CSA, 

which is to enhance agricultural productivity. The adoption 

of these practices leads to higher yields of maize and 

sorghum, contributing to increased food and income security 

for farmers. This boost in productivity is essential for 

meeting the growing demand for food in a changing climate. 

This is in line with (Lipper et al., 2018), who emphasize that 
certain sustainable agricultural practices, including precision 

farming, agroforestry, and conservation agriculture, can 

significantly contribute to increased productivity by 

optimising resource use and improving crop yields. 

 

Enhancing Resilience to Climate Change 

The significant effects of joint adoption, where farmers 

simultaneously embrace C. Fertiliser, CA, and intercropping, 

signify a remarkable synergy in terms of yield enhancement. 

This synergistic effect aligns with the second goal of CSA, 

which is to enhance resilience to climate change. By 
adopting a combination of practices, farmers are better 

equipped to withstand the adverse effects of climate 

variability and change. Collectively, these factors enhance 

soil health, water retention, and nutrient management, 

making farming systems more robust and adaptable to 

varying climatic conditions. The IPCC (2017) highlights in 

its special report on climate change and land practices such 

as conservation agriculture, crop diversification, and 

improved water management, which enhance the resilience 

of agriculture systems to climate change impacts. 

 

Reducing Greenhouse Gas Emissions  

While the analysis primarily focuses on yield improvements, 

the adoption of certain practices such as CA and 

intercropping can also have ancillary benefits related to 

reducing GHG emissions. This relates to the third goal of 

CSA, which is to reduce GHG emissions from agriculture. 

Conservation agriculture practices, for instance, can help 

reduce the need for synthetic fertilisers, which are associated 

with emissions. Intercropping can also optimise resource use 

efficiency, potentially leading to lower emissions per unit of 

production. The work (Smith, 2020) underscores the 

potential of sustainable land management practices, 
including agroforestry, crop choice, and intercropping, to 

reduce greenhouse gas emissions from agricultural activities, 

contributing to climate change mitigation efforts. 

The findings (Table 4) provide empirical support for the 

alignment between the adoption of specific agricultural 

practices and the goals of climate-smart agriculture. These 

practices not only enhance productivity but also contribute to 

building resilience in farming systems and, in some cases, 

mitigate GHG emissions. Joint adoption, as highlighted by 

this analysis, holds particular promise in achieving multiple 

CSA objectives simultaneously, offering a holistic approach 
to address the challenges posed by a changing climate in 

agricultural systems. The findings of this study are firmly 

aligned with a substantial body of research from a diverse 
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array of sources, affirming the profound impact of climate-
smart agriculture (CSA) practices on crop yields. These 

include (FAO, 2010; Arslan et al., 2016; Zougmoré el al., 

2016; Mutenje et al., 2016; Issahaku and Abdulai, 2020; 

Zakaria et al., 2021) all converge on a common narrative. 

Their collective research reinforces the notion that CSA 

practices whether examined individually or holistically, 

consistently yield higher crop outputs. These studies provide 

a robust foundation of evidence, illuminating the path toward 

a more sustainable, resilient, and prosperous future for 

agricultural communities. 

These findings provide a sufficient indication that the 

adoption of CSA practices is beneficial to some smallholder 
maize and sorghum farmers in the study area, as many of 

them can recount their successes upon adopting CSA 

practices. These findings reveal that the adoption of climate-

smart agricultural practices has generally improved the yield 

of maize and sorghum of the sampled smallholder farmers in 

the 2022 farming season preceding the survey in Northern 

Ghana. 

 

Table 4. Effect of Climate-Smart Agriculture practices on 

Yield of maize and sorghum 

Variable Maize 

yield 

Sorghum 

yield 

Pooled 

yield 

Treatment factors 
CF only  

 
0.246* 

 
0.0947* 

 
0.145** 

 (0.139) (0.0493) (0.0808) 
CA+ITC  0.375*** 0.0243** 0.363*** 

 (0.106) (0.0608) (0.0801) 
CF+ CA 0.298** 0.196*** 0.0345 
 (0.129) (0.0454) (0.0785) 
CF+ITC 0.278*** 0.111* 0.228** 
 (0.107) (0.0653) (0.0892) 
Joint adoption 0.166*** 0.00291 0.0422*** 

Socio-economic factors (0.121) (0.0550) (0.109) 
Age 0.00250 0.00262** 0.00347** 

 (0.00183) (0.00102) (0.00159) 
Sex -0.101** -0.0464* -0.103*** 
 (0.0454) (0.0251) (0.0392) 
Farm size 0.0556*** 0.0162** 0.0606*** 
 (0.0134) (0.00736) (0.0115) 
Education  -0.0120 -0.00451 -0.0131 
 (0.0136) (0.00792) (0.0121) 
Family labour  0.0305** -0.0264*** 0.0111 
 (0.0151) (0.00859) (0.0131) 

Hire labour 0.0113*** -0.00499** 0.00840*** 
 (0.00357) (0.00206) (0.00314) 
Constant 1.940*** 1.297*** 2.173*** 
 (0.108) (0.0605) (0.0901) 

Selectivity diagnosis    
Lnsigma 1.194*** -1.400*** -0.974*** 
 (0.195) (0.0988) (0.136) 
Lambda for CF only  0.277* 0.132*** 0.140 

 (0.150) (0.0489) (0.0889) 
Lambda for CA + ITC 0.0538 0.0165 0.124* 
 (0.0891) (0.0668) (0.0742) 
Lambda for CF + CA    0.299** 0.209*** 0.109 
 (0.149) (0.0420) (0.0803) 
Lambda CF + ITC 0.311*** 0.0106 0.313*** 
 (0.0762) (0.0564) (0.0676) 
Lambda for Joint Adoption  0.109** 0.0527** 0.00848** 

 (0.124) (0.0535) (0.123) 
Observations 1,000 1,000 1,000 

Source: Field data estimates using STATA, 2022. 
Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

CONCLUSION 

With careful evaluation of the summary of findings from the 

study, the following conclusions were reached: first, the 

study concludes that climate-smart agriculture practices 

including the use of chemical fertiliser, conservation 

agriculture, intercropping, and joint adoption, significantly 

improve maize and sorghum yields. Older farmers tend to 

achieve higher yields, whereas male farmers experience 

lower yields. Factors such as farm size, family labour 

availability and labour costs also influence maize and 

sorghum yields. 

 

RECOMMENDATION 

To ensure sustainable and environmentally conscious 

agricultural practices in Northern Ghana, the government 

should spearhead the promotion of conservation agriculture 

through the formulation and implementation of policies 

specifically designed to support the adoption of Climate-

Smart Agricultural Practices (CSAP). A pivotal aspect of this 

initiative involves substantial investment in training and 

deploying additional extension officers who can deliver 

essential services and comprehensive training to smallholder 

farmers.  

Conservation agriculture, unlike chemical fertilisation, offers 
a holistic and resilient approach by promoting soil health, 

reducing erosion, and enhancing water retention. By 

prioritizing CSAP, the government not only addresses 

environmental concerns but also empowers smallholder 

farmers with knowledge and skills to navigate the challenges 

of climate change, fostering a sustainable and prosperous 

agricultural future in the region. 
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