

Journal of Agriculture, Food and Environment (JAFE)

Journal Homepage: https://journal.safebd.org/index.php/jafe

https://doi.org/10.47440/JAFE.2025.6309

Research Article

Prevalence and antibiotic resistance profile of *Salmonella spp.* isolated from intestine of cattle sold in Abraka and environment

Odogwu DA*

Department of Microbiology, Faculty of Sciences, Delta State University, Abraka, Nigeria

ABSTRACT

Article History

Received: 09 July 2025

Accepted: 26 September 2025

Published online: 30 September 2025

*Corresponding Author

Odogwu Deborah Angel, E-mail: Dodogwu@delsu.edu.ng

Keywords

Cattle, Salmonella spp, antibiotics, resistance, health, zoonosis

How to cite: Odogwu D A 2025: Prevalence and antibiotic resistance profile of *Salmonella spp*. isolated from intestine of cattle sold in Abraka and environment. J. Agric. Food Environ. 6(3): 64-68.

Salmonella spp. remain a leading cause of foodborne illnesses globally, with cattle serving as key reservoirs for zoonotic transmission, particularly in lowresource settings like Nigeria where poor hygiene and antimicrobial misuse exacerbate risks. This study investigated the prevalence and antibiotic resistance profiles of Salmonella spp. isolated from the intestines of cattle sold in Abraka, Delta State, Nigeria. Using a cross-sectional design, intestinal samples were collected post-slaughter from five market sites with varying hygiene levels and processed via standard microbiological methods, including enrichment on MacConkey agar, and biochemical tests (e.g., citrate utilization, TSI. Results revealed a high prevalence of Salmonella spp. at 60% among the 10 samples collected (n=6 isolates), dominating over other microbes like *Bacillus* spp. and Acinetobacter (40%). Biochemical profiles confirmed classic Salmonella traits: Gram-negative, citrate-positive, fermenting with gas production. Antimicrobial susceptibility testing via Kirby-Bauer disk diffusion (CLSI guidelines) against 10 antibiotics showed widespread multidrug resistance (MDR), with Multiple Antibiotic Resistance Index (MARI) values of 0.6-0.8. Isolates exhibited high resistance to streptomycin, augmentin, and cephalexin, with reduced inhibition zones visualized in assays, signaling threats to veterinary and human treatments. These findings show that informal markets are hotspots MDR Salmonella dissemination, driven by unsatisfactory sanitation and overthe-counter antibiotic use. Urgent interventions, including biosecurity enhancements, stewardship programs, and surveillance programs, are recommended to mitigate zoonotic risks and safeguard public health in Nigeria's cattle industry.

© 2025 The Authors. Published by Society of Agriculture, Food and Environment (SAFE). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)

INTRODUCTION

Foodborne illnesses constitute a major global public health challenge, with *Salmonella* species recognized as one of the leading causative agents (Billah and Rahman, 2024). These Gram-negative, bacillary bacteria, belonging to the family Enterobacteriaceae, are notorious for infecting both animals and humans (Aljasir and Allam, 2025). Human infections typically occur through the ingestion of contaminated foods, especially animal-derived products such as beef, poultry, eggs, and dairy (Eng et al., 2015). Cattle serve as a primary reservoir for *Salmonella* species, harboring the pathogen asymptomatically in their intestines (Moraes et al., 2024). This silent carriage poses a serious risk, facilitating

undetected zoonotic transmission to humans via mishandled or undercooked contaminated meat.

In Nigeria and other sub-Saharan African countries, cattle farming is a cornerstone of the agricultural economy and rural livelihoods, with beef consumption being widespread (Ekpunobi *et al*, 2024). However, cattle management—from transport and slaughter to market sales, often occurs under suboptimal hygienic conditions. In Abraka, Delta State, cattle are frequently transported from northern Nigeria for local sale and slaughter, yet limited surveillance and microbiological screening of these animals heighten the potential for zoonotic spread.

The burden of *Salmonella* infections is particularly acute in low-resource settings, compounded by weak public health infrastructure, poor sanitation, and limited access to clean water (Moraes et al., 2024). This challenge is further intensified by the rising threat of antimicrobial resistance (AMR). The indiscriminate use of antibiotics in veterinary practice, such as over-the-counter dispensing without prescriptions, their application as growth promoters, and failure to observe withdrawal periods, has driven the emergence of resistant *Salmonella* strains (Pop and Papa, 2021; Pławińska-Czarnak et al., 2022; Kumar et al, 2025). Such resistant isolates jeopardize both animal and human health, leading to treatment failures, increased morbidity, and higher mortality rates (Van Boeckel et al., 2015).

Numerous studies in Nigeria have reported substantial Salmonella prevalence in cattle populations. For instance, Aworh et al. (2023) documented a 4.8% prevalence in beef cattle from Abuja and Lagos abattoirs, linking low rates to urban slaughter practices but noting 81.5% multidrug resistance among isolates. Similarly, Tamba et al. (2021) identified multiple Salmonella serovars contaminating water sources in cattle-rearing areas of Jos. These observations underscore the role of cattle and their environments as key pathogen reservoirs. In parallel, assessing antibiotic susceptibility profiles is crucial for gauging the public health implications of Salmonella infections. Alhaji et al. (2023) revealed that over 70% of Nigerian cattle farmers disregard proper antimicrobial stewardship, often administering broadspectrum drugs without veterinary oversight (Orum et al., 2022). Despite these insights, data on Salmonella prevalence and resistance patterns remain scarce for cattle traded in Abraka and its environs, highlighting the need for targeted investigations to inform risk mitigation and surveillance strategies.

This study aimed to isolate and identify antibiotic resistance in strains of *Salmonella spp.* isolated from the intestines of cattle purchased in Abraka to provide epidemiological data for the risk analysis of antibiotic resistance in the Nigerian cattle industry.

MATERIALS AND METHOD

Study Area

This study was conducted in Abraka, a semi-urban town in Ethiope East Local Government Area, Delta State, Nigeria (latitude 5°47′N-5°50′N; longitude 6°05′E-6°09′E). Located in the tropical rainforest belt of southern Nigeria, Abraka hosts Delta State University and supports a mixed population engaged in academic, agricultural, and small-scale commercial activities. It serves as a regional hub for cattle slaughter and sales, with livestock often sourced from northern Nigeria and neighboring West African countries. Climatic conditions, including average temperatures of 24-33°C and annual rainfall of approximately 2,500 mm, favor the survival of enteric pathogens such as Salmonella spp. Suboptimal sanitation in cattle markets and slaughter areas, characterized by open animal defecation and inadequate waste management, creates reservoirs for zoonotic bacteria and heightens the risk of antimicrobial-resistant Salmonella transmission to humans via direct contact or the food chain. Abraka was selected due to its high cattle slaughter volume and central role in the regional meat supply chain.

A cross-sectional descriptive design was employed to assess the prevalence and antibiotic resistance profiles of *Salmonella* spp. in cattle. This approach allows simultaneous evaluation of exposure (presence of *Salmonella* spp.) and outcome (antibiotic resistance) at a single time point among cattle in Abraka markets (Setia, 2016). It is particularly suitable for epidemiological studies of foodborne pathogens and antimicrobial resistance in resource-limited settings. Intestinal samples were collected from cattle randomly selected at five slaughter points in Abraka main market, representing diverse geographical and hygiene conditions.

Sampling Technique

Simple random sampling was used to select cattle from five market points with varying hygiene levels: (1) a seller's table near a tarred road; (2) a table adjacent to a waste dumpsite; (3) a table beside a gutter; (4) a relatively hygienic site; and (5) a site near the abattoir. This method ensured representation of the target population and supported prevalence estimation within the cross-sectional framework.

Sample Collection

Intestinal samples were aseptically collected post-slaughter, placed in sterile labeled containers, and stored in an insulated cold box with ice packs at 4°C to preserve bacterial viability. Samples were transported to the Microbiology Laboratory, Delta State University, Abraka, within 4–6 hours for processing.

Laboratory Analyses

All analyses were performed to isolate, identify, and characterize the antibiotic resistance of *Salmonella* spp. from cattle intestinal contents. Materials included sterile swab sticks, syringes with needles, distilled water, beakers, weighing scale, conical flasks, universal sterile containers, cover slips, micropipettes, aluminum foil, spatulas, measuring cylinders, autoclave, Petri dishes, MacConkey agar, nutrient agar, Mueller-Hinton agar, test tubes, Bunsen burner, cotton wool, spirit, sensitivity discs, inoculating loops, filter paper, oxidase reagent, Kovac's reagent, hydrogen peroxide, and meter rule. An incubator maintained at 37°C was used for all cultures.

Isolation and Culturing

Isolation and identification of organisms was carried out as described by Shivaprasad (2000) and Menghistu et al. (2011) with little modification. A sterile swab was used to collect intestinal contents, which were streaked onto MacConkey agar and incubated aerobically at 37°C for 24 h. Presumptive Salmonella colonies; colorless, smooth, convex with serrated margins were sub cultured onto nutrient agar for pure isolates.

The following biochemical tests were carried out: Indole test, triple sugar iron test, citrate test, methyl-red test, Voges-Proskauer test, lysine decarboxylase test, urease test, sugar (trehalose, sucrose, inositol, mannitol) fermentation test and motility test.

Antimicrobial Susceptibility Testing

Susceptibility was determined by the Kirby-Bauer disk diffusion method on Mueller-Hinton agar per Clinical and Laboratory Standards Institute guidelines (CLSI, 2020). Bacterial suspensions were adjusted to 0.5 McFarland turbidity, swabbed onto plates, and antibiotic discs applied: ofloxacin (10 μ g), amoxicillin-clavulanate (30 μ g), pefloxacin (10 μ g), ceftazidime (30 μ g), gentamicin (10 μ g), ciprofloxacin (10 μ g), cephalexin (10 μ g), ceftriaxone (30 μ g), streptomycin (30 μ g), and cefuroxime (30 μ g). Plates were incubated at 37°C for 18–24 h, inhibition zones measured in mm with a meter rule, and interpreted as susceptible, intermediate, or resistant using CLSI breakpoints. Multidrug resistance was defined as nonsusceptibility to \geq 1 agent in \geq 3 antibiotic classes (Magiorakos *et al.*, 2012).

RESULTS

Prevalence of Salmonella spp.

A total of ten (10) samples were collected from cattle intestines. The distribution of microbial organisms isolated from these samples is summarized in Table 1, highlighting the dominance of *Salmonella* spp. with a prevalence rate of

60% (6 out of 10 samples), compared to 40% (4 out of 10) for other organisms. This result indicates a significant burden of *Salmonella* contamination in the cattle sampled, which is a public health concern due to the zoonotic potential of this pathogen and its link to foodborne illnesses in humans.

Table 1: Percentage prevalence of Isolates

Organism	% Prevalence
Salmonella spp	60
Bacillus cereus, Acinetobacter	40

Biochemical Characterization of Isolates

The isolates were made to undergo biochemical tests, which was used to confirm the identity of the ten isolated organisms from the cattle intestines. Notably, six isolates displayed biochemical profiles consistent with *Salmonella* spp., particularly the negative Gram stain, positive citrate utilization, and gas production with glucose fermentation. The other four organisms identified included *Bacillus* spp. and *Acinetobacter*, underscoring the microbial diversity present, as shown in Table 2.

Table 2: Biochemical test results

Sample	catalase	Gram		indole	Citrate	H2S	ıcid	gas	glucose	actose	organism
	<u>ာ</u>	<u> </u>	0	-=		H		5.0	5.0		
CTI MA (A1)	+	-	-	-	+	-	+	+	+	-	Salmonella
CTI MA (A2)	+	+	-	-	+	-	+	+	+	-	Bacillus
CTI MA (B1)	+	-	-	-	+	-	+	+	+	-	Salmonella
CTI MA (B2)	+	-	-	-	+	-	+	+	+	-	Salmonella
CTI MA (C1)	+	-	-	-	+	-	-	-	+	-	Acinetobacter
CTI MA (C2)	+	+	-	-	+	-	+	+	+	-	Bacillus cereus
CTI MA (D1)	+	+	-	-	+	-	+	+	+	-	Bacillus cereus
CTI MA (D2)	+	-	-	-	+	-	+	+	+	-	Salmonella
CTI MA (E1)	+	-	-	-	+	-	+	+	+	-	Salmonella
CTI MA (E2)	+	-	-	-	+	-	+	+	+	-	Salmonella

CTI = cattle intestine, MA = MacConkey Agar

Antibiotic Resistance Profile of the Salmonella Isolates

Table 3 presents the antibiotic resistance profiles of *Salmonella* isolates against a panel of antibiotics, including Streptomycin (S), Ceftriaxone (CEF), Ofloxacin (OFX), Augmentin (AU), Pefloxacin (PEF), Cefotaxime (CTZ), Gentamicin (CN), Ciprofloxacin (CPX), Cephalexin (CEP), and Trimethoprim (TRX). The results show varying resistance patterns, with several isolates resistant to multiple antibiotics, as indicated by the high Multiple Antibiotic Resistance Index (MARI) values ranging from 0.6 to 0.8. This suggests the presence of multidrug-resistant *Salmonella* strains, as shown in Figure 1, posing a significant threat to both veterinary and human health.

Table 3: Multiple Antibiotic Resistance Index of Salmonella

Sample S	CEF	OFX	AU	PEF	CTZ	CN	CPX	CEP	TRX	MARI
CTIA ₁ R	R	R	R	R	R	S	S	R	R	0.8
CTIB ₁ R	R	S	R	S	R	R	S	R	R	0.7
CTIB ₂ R	R	S	R	S	R	S	S	R	R	0.6
CTID ₂ R	R	S	R	S	R	S	S	R	R	0.6
CTIE ₁ R	S	S	R	S	R	R	R	R	R	0.7
CTIE ₂ R	R	S	S	S	R	R	S	R	R	0.6

MARI: Multiple antibiotic resistance index

CTI = cattle intestine, MA = MacConkey Agar, R = resistant, S - Streptomycin, CEF - Cefuroxime, OFX - Ofloxacin, AU - Augmentin (Amoxicillin + Clavulanic Acid), PEF - Pefloxacin, CTZ - Ceftazidime, CN - Gentamicin, CPX - Ciprofloxacin, CEP - Cephalexin, TRX - Cotrimoxazole (Trimethoprim + Sulfamethoxazole)

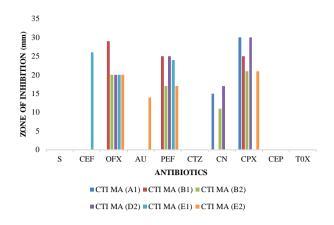
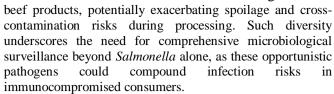



Figure 1: Zone of inhibition for Antibiotics Assay

DISCUSSION

The results from this study on the prevalence and antibiotic resistance profile of Salmonella spp. isolated from the intestines of cattle sold in Abraka and its environs reveal a concerning level of contamination and antimicrobial resistance, underscoring the zoonotic risks associated with cattle as a reservoir for foodborne pathogens. The high dominance of Salmonella spp. (60%) among isolates from cattle intestines, as summarized in Table 1, highlights a substantial public health burden in this region of Nigeria. This prevalence rate far exceeds those reported in several recent studies on similar cattle populations or beef products in Nigeria and neighboring African contexts. For instance, Aworh et al. (2023) documented a much lower prevalence of 4.8% for non-typhoidal Salmonella enterica in beef cattle sampled from abattoirs in Abuja and Lagos, Nigeria, attributing the lower rates to potentially better slaughter hygiene practices in urban settings compared to rural markets like Abraka. Similarly, Ekli et al. (2025) found a 26% prevalence in ready-to-eat beef (suya) samples from Minna Metropolis, Niger State, Nigeria, which, while elevated, still falls short of the 60% observed here, possibly due to postslaughter processing that may reduce but not eliminate contamination. In a broader African comparison, Tadesse et al. (2024) reported an 8% prevalence in cattle carcasses at an Ethiopian abattoir, emphasizing environmental and handling factors as key contributors, factors likely amplified in the informal cattle trade around Abraka. The stark contrast suggests localized drivers in Delta State, such as inadequate sanitation in holding pens, overcrowding, or contaminated feed/water sources, warranting targeted interventions like improved biosecurity at local markets to mitigate zoonotic transmission to humans via undercooked environmental exposure.

The biochemical characterization of isolates (Table 2) further confirms the identity of *Salmonella* spp. through classic profiles, including Gram-negative staining, positive citrate utilization, and gas production from glucose fermentation, aligning with standard diagnostic criteria for the genus. This is consistent with protocols used in contemporary studies, such as those by <u>Aworh et al. (2023)</u>, who employed similar biochemical and serological tests to identify rare serovars in Nigerian cattle samples. Notably, the co-isolation of other genera like *Bacillus* spp. and *Acinetobacter* (40% combined prevalence) reflects the microbial diversity in cattle intestines, a pattern echoed in <u>Ekli et al. (2025)</u>, where diverse contaminants were noted alongside *Salmonella* in

The antibiotic resistance profiles of the Salmonella isolates (Table 3) paint a particularly alarming picture, with multiple resistance patterns leading to high Multiple Antibiotic Resistance Index (MARI) values of 0.6-0.8, indicative of multidrug-resistant (MDR) strains capable of withstanding 60-80% of tested antibiotics. This is visualized in Figure 1, showing reduced zones of inhibition for key drugs like streptomycin (S), ceftriaxone (CEF), ofloxacin (OFX), and others, signaling a threat to both veterinary treatment efficacy and human therapy options. These findings resonate with recent evidence of escalating AMR in African livestock systems. For example, Dagah et al. (2024) reported MARI values up to 0.6 in Salmonella from roasted beef (suva) in Abuja, Nigeria, with 100% resistance to ampicillin, gentamicin, and other beta-lactams, mirroring the broad resistance here to augmentin (AU) and cefotaxime (CTZ). Likewise, Aworh et al. (2023) observed 81.5% MDR among Nigerian cattle-derived Salmonella, with over 85% resistance to gentamicin and 78% to tetracycline, often linked to mobile genetic elements disseminating resistance genes like aac(6')-Ib-cr and tetA. In Ethiopia, Tadesse et al. (2024) found comparable MDR rates (81.5%) in cattle isolates, including 100% resistance to ampicillin and 59% to trimethoprimsulfamethoxazole, highlighting a regional trend driven by indiscriminate antibiotic use in agriculture. The elevated MARI in this Abraka study (>0.5 threshold for high-risk sources) suggests chronic selective pressure from over-thecounter veterinary antibiotics, a common issue in Nigeria's informal livestock sector (Ekli et al., 2025). This juxtaposition emphasizes the urgency of antimicrobial stewardship programs, such as restricting non-essential prophylaxis in cattle rearing, to curb the emergence of "superbugs" that could render standard treatments like ciprofloxacin (CPX) ineffective.

Overall, these results position the Abraka cattle trade as a hotspot for *Salmonella* dissemination, with prevalence and resistance levels surpassing many recent benchmarks, likely due to socioeconomic and infrastructural gaps in rural Nigeria. While biochemical confirmation provides robust isolate validation, the high MDR burden aligns with global calls for One Health approaches integrating animal, human, and environmental surveillance (Aworh et al., 2023; Tadesse et al., 2024). Future research should incorporate genomic sequencing to trace resistance gene mobility, as demonstrated in these comparative studies, and advocate for policy reforms like hazard analysis critical control points (HACCP) in local abattoirs to safeguard food safety.

CONCLUSION

This study reveals a high prevalence of Salmonella spp. (60%) in the intestines of cattle sold in Abraka and its environs, coupled with alarming multidrug resistance profiles (MARI 0.6–0.8) against key antibiotics like ciprofloxacin and gentamicin, underscoring the urgent zoonotic and food safety threats in Nigeria's informal livestock trade. These findings, highlight the need for immediate interventions such as enhanced biosecurity in

markets, antimicrobial stewardship to curb resistance, and routine surveillance under a framework to safeguard public health and mitigate the spread of resistant pathogens from animal to human populations.

REFERENCES

- Alhaji NB, Odetokun IA, Adamu AM, Hassan A, Lawan MK, Fasina FO 2023: Antimicrobial usage and associated residues and resistance emergence in smallholder beef cattle production systems in Nigeria: A One Health challenge. *Veterinary Research Communications*, **47**(1), 233-245.
- Aljasir SF, Allam SA 2025: Prevalence and antibiotic resistance of *Salmonella spp.* and *Campylobacter spp.* isolated from retail chickens in Saudi Arabia. *Microbiology Research*, **16**(1), 27.
- Aworh OC, 2023: Prevalence and antimicrobial resistance of non-typhoidal *Salmonella enterica* from beef cattle in selected abattoirs in Nigeria. Food Control, 145, 109456. https://doi.org/10.1016/j.foodcont.2022.109456.
- Billah MM, Rahman MS 2024: Salmonella in the environment: A review on ecology, antimicrobial resistance, seafood contaminations, and human health implications. Journal of Hazardous Materials Advances, 13, 100407.
- Clinical and Laboratory Standards Institute 2020: M61Ed2
 Performance standards for antimicrobial susceptibility
 testing of bacteria, second edition. Clinical and
 Laboratory Standards Institute, Wayne, PA.
- Dagah H, Ameh JA, Mailafia S, Dantong DD, Onigbanjo OH, Ifeanye CIC, Adeyemo BJ 2024: Prevalence and antimicrobial susceptibility of *Salmonella* from roasted meat (" Suya") sold in federal capital territory, Abuja, Nigeria. *The Microbe*, **5**, 100179.
- Ekli R, Bala JD, Machunga-Mambula S, Adzitey F, Auta HS, Muhammad HL, Makun HA 2025: Prevalence of Antibiotic-Resistant *Salmonella enterica* Isolates from Ready-to-Eat Meat (Suya) and its Contact Surfaces in Minna Metropolis, Nigeria. *Food Safety and Risk*, **12**(1), 6.
- Ekpunobi NF, Adesanoye S, Orababa O, Adinnu C, Okorie C, Akinsuyi S 2024: Public health perspective of public abattoirs in Nigeria, challenges and solutions. *GSC Biological and Pharmaceutical Sciences*, **26**(2), 115-127.
- Eng SK, Pusparajah P, Ab Mutalib NS, Ser HL, Chan KG, Lee LH 2015: *Salmonella*: a review on pathogenesis, epidemiology and antibiotic resistance. *Frontiers in life science*, **8**(3), 284-293.

- Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, & Monnet DL 2012: Multidrugresistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. *Clinical microbiology and infection*, **18**(3), 268-281.
- Menghistu HT, Rathore R, Dhama K, Agarwal RK 2011: Isolation, identification and polymerase chain reaction (PCR) detection of *Salmonella species* from field materials of poultry origin. *Intl J Microbiol Res*, **2**(2), 135-42.
- Kumar G, Kumar S, Jangid H, Dutta J, Shidiki A 2025: The rise of non-typhoidal *Salmonella*: an emerging global public health concern. *Frontiers in Microbiology*, **16**, 1524287.
- Moraes DMC, Almeida AMDS, Andrade MA, Nascente EDP, Duarte SC, Nunes IA, Minafra C 2024: Antibiotic resistance profile of *Salmonella Sp.* isolates from commercial laying hen farms in Central-Western Brazil. *Microorganisms*, **12**(4), 669.
- Orum TG, Ishola OO, Adebowale OO 2022: Occurrence and antimicrobial susceptibility patterns of Salmonella species from poultry farms in Ibadan, Nigeria. *African Journal of Laboratory Medicine*, **11**(1), 1606.
- Pławińska-Czarnak J, Wódz K, Kizerwetter-Świda M, Bogdan J, Kwieciński P, Nowak T, Anusz K 2022: Multi-drug resistance to *Salmonella spp.* when isolated from raw meat products. *Antibiotics*, **11**(7), 876.
- Popa GL, Papa MI 2021: Salmonella spp. infection-a continuous threat worldwide. Germs, 11(1), 88.
- Setia MS 2016: Methodology series module 3: Cross-sectional studies. *Indian journal of dermatology*, **61**(3), 261-264.
- Shivaprasad HL 2000: Fowl typhoid and pullorum disease. Revue scientifique technique (International Office of Epizootics), 19(2), 405-424.
- Tadesse A, Sharew B, Tilahun M, Million Y 2024: Isolation and antimicrobial susceptibility profile of *Salmonella species* from slaughtered cattle carcasses and abattoir personnel at Dessie, municipality Abattoir, Northeast Ethiopia. *BMC microbiology*, **24**(1), 357.
- Tamba Z, Ndams IS, Oniye SJ, Kwaga JKP, Wada YA 2021: Microbact 24E detection and prevalence of faecal *Enterobacteriaceae* isolates from lactating cattle in Jos-Plateau and environs, Nigeria. *Dutse Journal of Pure and Applied Sciences*, **7**(2a).
- Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Laxminarayan R 2015: Global trends in antimicrobial use in food animals. *Proceedings of the National Academy of Sciences*, **112**(18), 5649-5654.

